Armando47: Difference between revisions
Line 350: | Line 350: | ||
se segsrc e segdst sono entrambi uguali al segaddr, allora il router funge da repeater | se segsrc e segdst sono entrambi uguali al segaddr, allora il router funge da repeater | ||
i client ignorano i messaggi con segaddr diverso dal proprio | |||
===== local routing advertisement header ===== | ===== local routing advertisement header ===== |
Revision as of 17:45, 29 August 2012
Device crittografico tascabile
device piccolo ed economico per lo scambio di messagi di testo cifrati su canali audio.
chi e' interessato a una parte se la prenoti
- gnugo: FEC, interleaver, hardware
- ciaby: dds
- ema: aprs
Interfaccia utente
keypad
16 tasti: da 0 a 9 e A/su B/giu C/sinistra D/destra E/enter F/exit
- microswitch in matrice di 4x4: costoso, bisogno di bucare box
- touch capacitivo: complesso lato SW, tocco meno confortevole
lcd
per una serie di ragioni sarebbe meglio un GLCD (piu modelli a 3.3, piu compatto, piu economico) ma sembra che nessuno voglia prendersi lo sbattimento di implementare una grafica quindi forse, per ora, si va su un display a caratteri
un fet controlla l'accensione della backlight
Contenitore
se il device e' capace di caricarle, volendo si puo fare a meno dello scompartimento batterie apribile. si mettono dentro le batterie e si avvita. piu semplice e compatto, ma si perde la possibilita di poter aver dietro piu batterie e sostituirle.
c'e' poca roba per 4 stilo, volendo si puo andare a 2 o 3 stilo.
- http://www.pactecenclosures.com/product-models.php?classid=27&seriesId=58
- http://www.serpac.com/h-series.aspx
- http://www.takachi-enclosure.com/data/p_01plastic.html
- http://www.polycase.com/
- http://www.all-boxes.com/index.shtml
- http://www.budind.com/plastic_boxes.php
- http://www.boxenclosures.com/
- http://www.newageenclosures.com/
- http://www.okw.co.uk/enclosures/plastic_enclosures.htm
- http://www.maplin.co.uk/components/enclosures/plastic-enclosures
possibili candidati
PCB
il circuito stampato + componenti avra spessore minimo (6 mm), e dovrebbe essere abbastanza piccolo (8-10 cm2), al netto di eventuale parte per la tastiera
Connettori esterni
Jack audio
Saranno due jack stereo da 3.5mm. idealmente il pinout dovrebbe essere piu simile possibile a quello degli rtx piu diffusi, in modo da poter collegare le radio con semplici cavi maschio-maschio jack
purtroppo i pinout degli rtx in circolazione sono una giungla. bisogna vedere sopprattutto i tipi di PTT in circolazione. da armando si puo avere sia una tensione per TX che una chiusura contatto.
- gli intek mt-5050 sembra seguano lo standard icom
- il wouxun uv1d http://www.worldwidedx.com/amateur-radio-modifications/68013-wouxun-ht-spkr-mic-cable-pinout.html
- brondi http://www.rogerk.net/forum/index.php?topic=19946.0
letture:
- http://www.dl8kdl.net/articles/projects/electronics/pinouts
- http://www.wa4bpj.com/Ham_Radio/RARS/RARS_News_Hour/RARS_News_Hour.htm
Connettore digitale
viene esposta un po di roba attraverso un header con passo 0.1", dual line
GND | Massa del device |
digital V+ | Uscita 3.3v regolati |
UART_RX | |
UART_TX | |
UART_CTS | |
UART_RTS | |
OutSymbolBit0 | |
OutSymbolBit1 | |
OutSymbolBit2 | |
OutSymbolBit3 | |
PTT in | |
PTT out | |
SQUELCH in |
Connettore alimentazione
se le pile sono 2, il connettore di alimentazione puo essere un mini-USB
Componenti interni
- processore: dspic33fj128gp802 oppure dsPIC33FJ128GP804 se i piedini non ci bastano
- 2 regolatori 3.3v
- quarzo 8mhz
- quarzo 32khz
- op-amp filtro antialias 4khz
- op amp uscita
- condensatori di livellamento vari
- condensatore tampone per cambio pile
- FET di controllo carica batterie
Protocolli
armando e' in grado di parlare differenti protocolli
APRS
Automatic Packet Reporting System, e' un sistema di localizzazione a pacchetti che usa un protocollo AX.25 in modalita senza connessione su una modulazione afsk Bell 202 a 1200 bps
sarebbero utili 3 modalita APRS
- client, che riceve dalla UART stringhe NMEA e le trasmette in aprs
- digipeater, che ritrasmette i messaggi APRS ricevuti
- gateway, che manda via UART i messaggi APRS ricevuti
Qui c'è vita morte e miracoli dell'aprs, con relative specifiche:
la prima reference: ftp://ftp.tapr.org/aprssig/aprsspec/spec/aprs101/APRS101.pdf
sw da cui è possibile attingere: http://info.aprs.net/index.php?title=Software
Per fortuna ci sono delle bellissime librerie in c++
http://sourceforge.net/projects/libaprs/
http://sourceforge.net/projects/ax25/
https://code.google.com/p/trackuino/ (solo invio) c'e' una versione in gcc-C
https://sites.google.com/site/ki4mcw/Home/arduino-tnc (solo ricezione)
http://aprsdroid.org/ (invia e riceve, codice utilizzabile?) AGH! e' scritto in SCALA.. mi sa di no
arNet
Il protocollo di comunicazione specifico di armando e' arNet
e' un protocollo per lo scambio di piccoli blocchi di dati (da 16 a 1024 byte) tra piccoli gruppi di nodi (massimo 256), connessi da un mezzo fisico:
- half-duplex
- senza meccanismi di collision detect
- con rilevazione di canale occupato opzionale
usa schemi di modulazione psk o fsk, con costellazioni di dimensione da 2 a 32.
per resistere agli errori di trasmissione, gli header e i dati passano attraverso un #FEC.
um messagio arNet e' composto da:
- un blocco di start di 8 simboli
- uno o piu header da 4 byte ognuno, con #FEC e #Interleaver
- zero o piu blocchi dati da 16 byte ognuno, con #FEC, #Interleaver e (opzionalmente) #Cifratura
Cifratura
algoritmo di cifratura: AES-256 (blocco 128 bit, chiave 256 bit)
la chiave e' composta di 64 caratteri esadecimali
il blocco crittato e' sempre di 16byte
- http://www.literatecode.com/aes256 sembra ok, volendo si puo ottimizzare qualcosa per i 16bit
- http://gladman.plushost.co.uk/oldsite/AES/
- http://axtls.sourceforge.net/
FEC
algoritmo di FEC: Hadamard code
la latenza minima al netto del FEC e' data dal blocco di crittazione (16bytes).
anche la granularita della protezione di errore FEC e' data dal blocco di crittazione (16bytes): e' inutile tentare di preservare l'integrita di blocchi di dati piu piccoli di 128bit, il danneggiamento anche di un solo bit si ripercuoterebbe sul contenuto di tutto il blocco di crittazione.
se si perde anche un solo bit del segnale al netto del FEC vanno persi 16 caratteri.
questo e' tendenzialmente male pensando all'uso con messaggi di testo, i linguaggi naturali hanno una loro ridondanza a livello di parola considerevole. per applicazioni non di testo questo vantaggio non esiste, anche se per messaggi molto piu piccoli di 16byte l'overhead dato dal padding e' comunque considerevole.
d'altra parte dimensioni di blocco crittografico piu piccole implicherebbero minore sicurezza (anche se in realta il tutto sarebbe proporzionale alla quantita di dati trasferiti con una determinata chiave). crittare il codice FEC (n = 128bit, se si usano input k di 8 bit) sembrerebbe allettante dato che si allineerebbe al blocco crittografico, ma:
- crittograficamente e' un inganno, dato che i codici fec trasmessi sono comunque sempre 256 dal punto di vista della ripetitivita sarebbe equivalente ad usare una cifratura con dimensione blocco di 1byte. troppo poco.
- dal punto di vista del FEC e' un inganno, decrittando un blocco danneggiato si avrebbe un codice fec danneggiato in maniera complessa, perdendo il vantaggio della ortogonalita del codice di hadamard.
alla luce di questo forse ha senso considerare dei block codes diversi da quello di Hadamrd, che e' non-ottimale per k maggiore di 7 [1].
la dimensione del blocco FEC * numero di caratteri del blocco AES sarebbe quindi:
- 2^(8-1) * 16 = 2048 bit nel caso di FEC con input a 8 bit.
- (2 * 2^(4-1)) * 16 = 256 bit nel caso di FEC con input a 4 bit (ogni carattere 2 input).
prendendo il secondo caso, con un alfabeto di 16 toni per simbolo, quindi 4 bit, la latenza sarebbe di 64 simboli, che a 32 simboli per secondo farebbe 2 secondi per 16 caratteri.
la cosa migliore da fare e' rassegnarsi a questa latenza di blocco e cercare di fare uno spreading piu efficiente possibile, vedi interleaving.
letture:
- http://www.ece.ualberta.ca/~hcdc/Library/ErrorContrClass/DecodingBasic.pdf
- https://en.wikipedia.org/wiki/FX.25_Forward_Error_Correction
Interleaver
i possibili problemi 'descrivibili' del path di trasmissione sono:
problemi di spettro:
- interferenze coerenti (toni sovrapposti a uno dei nostri bin)
- errori della risposta in frequenza (equalizzazione..)
entrambi comportano il danneggamiento sistematico di una o piu determinate lettere dell'alfabeto in ogni simbolo
problemi nella sequenza di simboli:
- disturbo impulsivo prolungato su tutto lo spettro
- disturbo impulsivo ciclico su tutto lo spettro
che comportano la perdita di piu simboli contigui o la perdita sistematica di un determinato simbolo.
per mitigare questi problemi puo essere conveniente una qualche forma di interleaving sia in tempo che in frequenza/fase.
prendiamo il caso di un blocco da 256 bit formato da 4 sottoblocchi quadrati da 64bit -> 16 simboli*16 toni contenenti ognuno 4 caratteri.
con un hadamard code, si possono correggere fino ad 1/4 dei bit del codice.
prendiamo come casi peggiori possibili
- la perdita sistematica di 1 bit del simbolo
- la perdita di un intero sottoblocco
questo significa che in ogni sottoblocco si possono danneggiare (non contemporaneamente) fino a:
- 4 simboli
- 4 toni ?
il sistema piu rudimentale e' l'interleaving elicoidale, ad esempio una rotazione nel senso della sequenza combinata con una rotazione nel senso del simbolo. l'incremento sarebbe di un bit/simbolo in senso verticale e di un sottoblocco + un simbolo in senso orizzontale
uint8_t InterleaveBlock(uint8_t *InData, int16_t *DataMatrix, uint8_t *ModulationSymbolsBuffer){ uint8_t BitPos, SymbolOffset, BitOffset; for (uint8_t FECBlock = 0; FECBlock < HadamardCodesPerInterleaverBlock; FECBlock++){ BlockEncodeChar(DataMatrix, InData[FECBlock]); for (uint8_t FECBit = 0; FECBit < HadamardCodeSize; FECBit++){ BitPos = (FECBlock * HadamardCodeSize) + FECBit; BitOffset = BitPos % BitsPerModulationSymbol; SymbolOffset = ((FECBit * HadamardCodeSize) + FECBlock) % SymbolsPerInterleaverBlock; ModulationSymbolsBuffer[SymbolOffset] |= (DataMatrix[FECBit] & 0b1) << BitOffset; // printf("%u,%u,%u\n", SymbolOffset, BitOffset, BitPos); } // printf("\n in FEC: "); // printbuf(DataMatrix, HadamardCodeSize, 8); } }
che produce una disposizione [2], dove il colore e' l'ordine dei bit in ingresso (dal blu al rosso), la x e' il tempo e la y il simbolo in uscita
Soft-Decision
nella catena di demodulazione si possono ottenere diversi indici di affidabilita
- rapporto tra il tono di picco e la media degli altri toni
- valore del picco carattere nella trasformata di hadamard
una cosa MOLTO carina da fare (dato che siamo in uno dei pochi casi in cui le risorse di calcolo sono ben piu grandi della banda) e' avere una qualche strategia di soft-decision pilotata dai valori in uscita dalla fft, magari triggerata da differenze tra l'energia nei bin inferiori a una data soglia.
Blocco start
indica l'inizio di una trasmissione. precede sempre un blocco HEADER.
questo riferimento deve avere autocorrelazione tendente a zero, essere abbastanza lungo (raro) da evitare false partenze, abbastanza corto da non creare overhead. viene usato per la sincronizzazione di simbolo e per l'equalizzazione.
lunghezza 8 simboli. 4 simboli alla frequenza/fase base e 4 all'estremo opposto della costellazione di simboli (frequenza massima/fase +180).
letture:
- http://www.ece.ualberta.ca/~hcdc/Library/NagKhaSchBur06.pdf
- http://www.argreenhouse.com/society/TaCom/papers99/32_5.pdf
- https://en.wikipedia.org/wiki/Gold_code
Blocchi header
sono una serie di almeno 1 blocchi con dimensione sempre 4 bytes che precedono sempre una serie di zero o piu blocchi dati.
il primo blocco e' chiamato default header ed e' sempre presente.
i blocchi header successivi sono indicati dall' header type
i blocchi header subiscono tutti block-coding -> interleaving
la lunghezza dell'intero messaggio sara sempre 4 + (hnum * 4) + (siz * 16) bytes
Default header
e' l'header di base, sta all'inizio di ogni messaggio e si occupa dell'instradamento locale e dell'ordinamento dei pacchetti
8b (src) | 8b (dst) | 2b (hnum) | 6b (siz) | 8b (cnt) |
campi:
- hnum numero di header da 4 byte che seguono il default header.
- siz dimensione del blocco dati che segue in multipli di 16byte
- src indirizzo del mittente
- dst indirizzo del destinatario/indirizzo del gruppo destinatario
- cnt contatore incrementale dei pacchetti inviati dal nodo con tupla (src,dst/grp). un salto nella numerazione implica perdita pacchetti.
il multicast e' semplicemente un indirizzo di ricezione secondario sui client
src e dst sono significativi solo sul canale fisico, e' normale che ci siano client omonimi su due canali diversi
global routing header
il routing e' un instradamento a livello globale
un indirizzo globale e' composto dall'indirizzo del segmento concatenato coll'indirizzo del terminale
4b (htype) | 4b (ttl) | 1b (fecn) | 1b (becn) | 8b (segsrc) | 8b (segdst) |
- htype tipo header 0x1
- ttl numero di hop massimi di routing. viene decrementato ad ogni hop.
- fecn forward congestion notification. 0 normale, 1 congestionato.
- becn backward congestion notification. 0 normale, 1 congestionato.
- segsrc id del segmento di rete del mittente.
- segdst id del segmento di rete del destinatario.
se segsrc e segdst sono entrambi uguali al segaddr, allora il router funge da repeater
i client ignorano i messaggi con segaddr diverso dal proprio
local routing advertisement header
il pacchetto viene mandato dai router per istruire il segmento di rete sul proprio indirizzo e sulle regole di accesso al canale
tutti i terminali sul canale devono memorizzare queste impostazioni
4b (htype) | 8b (tframe) | 8b (segaddr) |
- htype tipo header 0x2
- tframe dimensione timeframe del router in multipli di 10msec
- segaddr id del segmento di rete
CRC header
4b (htype) | 4b (crctype) | 24b (crc) |
- htype tipo header 0x2
- crctype tipo crc (0x0000 = CRC-24 di OpenPGP)
- crc valore crc
Reliability header
quando il FEC non basta...
4b (htype) | 4b (arqtype) | 8b (cnt) |
- htype tipo header 0x2
- arqtype schema arq: 0x0 = "Stop-and-wait ARQ", 0x1 = "Go-Back-N ARQ", 0x2 = "Selective Repeat ARQ"
- arqaction arq action (ack, nack, retransmit)
- arqvalue arq value (cnt, back)
letture:
http://www.isode.com/whitepapers/stanag-5066.html
Blocco DATA
sempre 16 bytes di dati netti
subisce: cifratura -> block-coding -> interleaving
voci di configurazione
- modulazione
- tipo di modulazione
- fsk
- bw in Hz uint16
- psk
- frequenza centrale uint16
- dimensione costellazione uint8
- simboli per secondo uint8
- fsk
- tipo di modulazione
- ptt
- manuale/automatico
- tempo di guardia attacco in ms uint8
- tempo di guardia stacco in ms uint8
- protocollo
- arNet
- indirizzo uint8
- alias ricezione uint8
- router bool
- priorita uint8
- ttl uint8
- chiave 256 bit
- aprs
- arNet
- interfaccia
- auto power off
- backlight
uC
mappa pin:
Pin | Funzione | Nome | porta |
---|---|---|---|
1 | MCLR | ||
2 | Ingresso audio. sbilanciato 3.3v | AUDIO_IN | RA0 |
3 | Livello batteria/2 | BATT_IN | RA1 |
4 | Pulse 1 matrice tasti/PGED1 | KEY_PULSE_1 | RB0 |
5 | Pulse 2 matrice tasti/PGEC1 | KEY_PULSE_2 | RB1 |
6 | Pulse 3 matrice tasti | KEY_PULSE_3 | RB2 |
7 | Pulse 4 matrice tasti | KEY_PULSE_4 | RB3 |
8 | VSS | ||
9 | Xtal 8mhz | OSC1 | RA2 |
10 | Xtal 8mhz | OSC2 | RA3 |
11 | Ptt in | PTT_IN | RB4 |
12 | Ptt out | PTT_OUT | RA4 |
13 | VDD | ||
14 | RB5 | ||
15 | Display SDO | RB6 | |
16 | Display SCL | RB7 | |
17 | UART Tx | RB8 | |
18 | UART Rx | RB9 | |
19 | VSS | ||
20 | VCAP | ||
21 | Ritorno 1 matrice tasti | KEY_RETURN_1 | RB10 |
22 | Ritorno 2 matrice tasti | KEY_RETURN_2 | RB11 |
23 | Ritorno 3 matrice tasti | KEY_RETURN_3 | RB12 |
24 | Ritorno 4 matrice tasti | KEY_RETURN_4 | RB13 |
25 | Uscita + DAC | DAC1LP | RB14 |
26 | Uscita - DAC | DAC1LN | RB15 |
27 | AVSS | ||
28 | AVDD |
Pin | Funzione | Nome | porta |
---|---|---|---|
1 | |||
2 | |||
3 | |||
4 | |||
5 | |||
6 | VSS | ||
7 | VCAP | ||
8 | |||
9 | |||
10 | |||
11 | |||
12 | |||
13 | |||
14 | |||
15 | |||
16 | AVSS | ||
17 | AVDD | ||
18 | MCLR | ||
19 | Ingresso audio | AUDIO_IN | AN0 |
20 | V batteria/2 | VBATT_IN | AN1 |
21 | PGED1 | ||
22 | PGEC1 | ||
23 | |||
24 | |||
25 | |||
26 | |||
27 | |||
28 | VDD | ||
29 | VSS | ||
30 | Quarzo 8MHz | OSC1 | |
31 | Quarzo 8MHz | OSC2 | |
32 | |||
33 | |||
34 | |||
35 | |||
36 | |||
37 | |||
38 | |||
39 | VSS | ||
40 | VDD | ||
41 | |||
42 | |||
43 | |||
44 |
generatore OTP
dato che abbiamo un rtc l'apparato potrebbe fare da one time password generator. usiamo la chiave come seme? che implementazioni ci sono?
letteratura:
- https://en.wikipedia.org/wiki/Time-based_One-time_Password_Algorithm
- https://otpd.googlecode.com/svn-history/r77/trunk/cardops/totp.c
stringa di configurazione
la configurazione dell'apparato deovrebbe essere importabile ed esportabile come una stringa esadecimale anche la chiave crittografica sara una stringa di 16 caratteri esadecimali
PIN/PUC
quando il device andra in sleep sara necessario un pin di 4 caratteri per risvegliarlo
dopo 5 tentativi sbagliati, il device dimentica la chiave crittografica.
Alimentazione
regolatori
step-up:
charge-pump
power manager:
batterie
4 stilo o ministilo Ni-Mh o alkaline (la tensione va da 4.5 a 6v)
se 4 stilo e' scomodo per altri motivi, si puo andare con 2 stilo e regolatore step-up. di buono c'e' che si puo caricare da usb.
la tensione batteria a monte dei regolatori viene campionata a valle di un partitore 1/2 quando la tensione scende sotto il livello critico, il device va in sleep.
ricarica batterie
il device deve poter ricaricare le batterie da una alimentazione esterna, con controllo dV della carica.
questo significa che l'alimentazione esterna sara' di almeno n_pile*1.27*1.5 = (4 pile = 7.62 v, 2 pile = 3.81v)
tampone
il device deve poter conservare le impostazioni anche dopo brevi interruzioni dell'alimentazione (cambio pile o alimentazione esterna) se il uP e' in sleep mode dovrebbe bastare un condensatore elettrolitico
ANI
client e server Push-To-Talk ID e selective calling.
tipi di ANI
- Motorola’s MDC-1200
- Kenwood’s FleetSync
- Harris’ G-Star (aka GE-Star)
- DTMF
- 5-Tone
letture: